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Quantum-classical comparison in chaotic systems
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We introduce a characteristic time of a classical chaotic dynamics, represented by the coherence time of the
local maximum expansion direction. For a quantum system whose classical limit follows the above chaotic
dynamics, the ratio between this time and the decorrelation(ifihe order of the reciprocal of the maximum
Liapunov exponentrules the ratio between nonclassi¢&loyal) and classica(Liouville) terms in the evolu-
tion of the density matrix. We show that such a ratio does not provide a complete criterion for quantum-
classical correspondence.

PACS numbdps): 05.45+b, 03.65.Bz

The problem of the correspondence between the classical . #2n(—1)"
and the quantum evolution of a Hamiltonian system has been ~ W={H,W}pg+ >, mai”ﬂvagmw, )
recently considerefil—7] in various situations. A quantum- n=1 '
classical correspondend®CC) implies an answer to the

guestion of the limitations imposed by the quantum nature o igner form [12], V is the potential{ }pg stays for the

the system to the measuring procé8k >
- . Poisson bracket$13], and d,,d,, stay for d/(dx),d/(dp).
In particular, recent papefS] have shown that the ratio b{Wwotice that the right hand side of E(R) contains two dif-

here H is the Hamiltonian of the system written in the

between nonclassical and classical terms in the evolutio (1 hich tribute to th lution & Th
equation of the phase space density diverges for an unsta ren erbms I\<Ntl(t: contribu ? oth € e(\j/p u 'Orli. ) i e;l
motion, whereas it decays to zero if one accounts for a cou- 0ISSON bracket term generates the orainary Liouville Tow,

pling with the environment, and that decay was taken as which corresponds to the_ CI"’.‘SS'(‘W evolution, while the
definition of QCC. sum represents thg contribution of the Moyal terb4] to

In this paper we present a relevant case wher@bthat thel qllear}turg eé\éolul\t/:on ?’Y b ble to th
ratio remains confined to very small values even for an iso- in ReL. [9] the oyal terms become comparable 1o the
lated systemi.e., in the absence of the environmertie- Poisson bracket at a timg proportional to the reciprocal of

cause of the intrinsic spread of the chaotic motion, and yeth® Liapunov exponend. There, the growth of the Moyal

(i) a QCC, defined more rigorously as the absence of appri(;ntributions is quenched by the coupling with a thermal

ciable differences between classical and quantum pha th, which involves further diffusive and dissipative terms
space densities, is not achieved, since for long times thi® P€ addedhto Ec{z).r]!Evenfthhough d|s|5|pat|on ang dllffuspn
guantum phase space density shows appreciable deviatioyarantee the vanishing of the Moyal terms on the long time
from the classical one. Claiffi) is based on the introduction Sc@les and thus the correspondence between the quantum and

of a chaotic indicator, not considered previously in classicaf!@ssical description, here we are interested in finding suffi-
chaos; claim(ii) is supported by numerical evidence. Pre- C|gnt_cond|t|ons for ponflnlng the Moyal contributions within
cisely, we refer to a classically chaotic nonautonomous sys"21 limited range for isolated systems. . :
tem(i.e., with a time dependent forcing teymwhich models Let us mtroduce one of the S|mple§t C,haOt'C dynam|.cs
a Hydrogen atom in a Rydberg state excited by a microwav&vhich gives rise to nonzero Moyal contributions. The Hamil-

field [10]. tonian of the system is
The quantum evolution is described by the quasiprobabil- 2
ity Wigner function[11] H= Zp—m+V(x,t), @

1 [+ i Y y
W(a.p)= ﬁfﬁm dyewﬁ)py<q_ §|p|q+ §>’ 1) where m is the mass of the system,
V(x,t) =V1(X) + Vo(x,t), Vi=—(1/2)ax?+(1/4)x*, and
wherep is the density operator of the systemandq are the V2= ex coswt.
conjugate variables and...) stays for the expectation  HereV, is the unperturbed potentiay/, is the driving
value. potential, anda,B,€,w are the real parameters to be later
The Wigner function can take negative values, thus it isspecified. Equatiori2) becomes

not a probability functiori11]; however, it represents a good
tool for inspecting the classical or quantum nature of the
system. Indeed, its time evolution is ruled by

e s d p oW 42  Pw
=(—ax+ Bx ecomt)%—aa—x—zﬂx_apaé )
4

*Also at Dept. of Physics, University of Florence, 150125 Flo- while the classical behavior is ruled by the Hamilton-Jacobi
rence, Italy. equations which read as
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Equation(5) can give rise to a chaotic dynamics. Further-
more, choosing o> (a/m)¥? (forcing frequency much
higher than the proper frequency of the autonomous) part
preserves the conservative nat(ireaveragg of the system. 1.0

The guiding line of our approach is that, for a bounded ARV
chaotic system, another characteristic time scale arises in ad- : MY
dition to 7, due to the continuous stretching and folding 0.5

J

process which causes a twisting of the direction of the eigen-
nent\. As a consequence, the system does not always ex- 0.0 e T

L 500 600

IRARSANERRRNR WA

vector corresponding to the local maximum Liapunov expo-

pand in the same direction of phase space, but, on the 0.0 0.5 1.0 15 2.0
contrary, each variable experiences both contraction and ex- &
pansion depending upon the local position on the trajectory.

Thus besides the decorrelation time, one must intro- FIG. 1. Maximum Liapunov exponent (solid line) and aver-

duce another time scale, proportional to the reciprocal of aged twisting frequenc{f)) (dashed lingas functions of the forc-
the averaged frequendy)) of the twisting of the direction ing amplitudee for the driven double-well systemk and((}) have
locally singled by the eigenvector corresponding\to been evaluated for the classical systghy. (5)] with a=1, 8
Depending on the values of, and 7,, we classify the =2, m=1,0=25. Arrows indicate a possible choice for which
chaotic dynamics as follows. In those systems for whigh (£2)>A. Inset: Temporal evolution of the angiformed by the
is smaller than, or of the order of,, the direction ofx eigenvector corresponding to the local maximum expansion direc-
remains invariant over the time scale sufficient for the Moyaltion With respect to tha axis. ¢ has been calculated fer=0.7 and
contributions to be comparable with the Liouville terms. {he above values of the other parameters.

Hence these systems are intrinsically quantum. A transition £, 4 givene we have reported in the inset of Fig. 1 the
from the quantum to the classical description can bggmporal evolution of the anglé formed by the major axis
achieved only through the coupling to an environmi&it ¢ 1he |ocal ellipse with thex axis. The twisting process
On the contrary, ifr;> 75, the growth of the Moyal terms  yotermines a characteristic oscillation@fthe averaged fre-
on a single decorrelation time is limited by the change of thequency of which is(Q)). Looking at Fig. 1 we can easily
direction of the maximum expansion. Indeed, the growth Oflocate the ranges of the control parameterfor which
the Moyal terms is due to the fact that, since they are pro:_ > 7, holds.
portional to the powers of the reciprocal aAk(Ap), if one ! Moving now to the quantum system ruled by the same
of the two conjugate variables is locally expanding, the Othe'Hamiltonian, we will focus on the,> 7, case to show that

one is contracting to preserve the volume conservatip N in thfhe Moyal terms are limited and therefore we cannot invoke
phase space. As a consequence, those terms containing PaY

. . . _ eir growth to explain the lack of the QCC.
ers of the contracting variable in the denominator tend to For this purpose, Eq4) has been numerically integrated
explode. To apply these general considerations to the specifB"V o

haotic d ! first identify th f1h trol er aNXxXN two dimensional X,p) grid, where the maxi-
chaotic dynamics, we Tirst iden ify the range of the contro mum and minimunx and p values have been selected ac-
parameters for which the system belongs to the former or t

the latter %ordingly to the choice oix and 8. At each timet,, the
€ atter case. . . Liouville terms have been evaluated with the Lax-Wendroff
For the classical evolution of the driven double-well sys-

: i scheme[16] due to the hyperbolic nature of such terms,
tem[Eq.(5)], Fig. 1 shows the plot ok and(() against the while the Moyal contributions have been evaluated using a
control parametee. A has been calculated with the algo-

rithm by Benettinet al. [15]. As for (©2), we have intro- finite difference method for the third order partial derivatives

duced the followi A bt id [17]. Boundary conditions implying the setting to zero of the
uce the ollowing strategy. At eac tmh,eyve considera  gerjvatives at the borders of the grid have been chosen. The
circle of radius# centered at the intersection of the actual

; : numerical integration has been performed over a global time
trajectory with a plane transversal to the flow. In our case

d ; O ) ) ; much larger than 1J in order to assure the conservative
for any t'.me’. this plane coincides with the two d'men.s'onalnature of the quantum solution. A useful parameter is also
(x,p) projection of the phase space. We let all the points ONhe log timet o, [18]
the circle evolve to the time,, 1(t,.1—ty=7rk, Where log
Trk IS the Runge-Kutta integration interyalAt this new
time the points will form an ellipse about the time evolved of tlog:KIn
the actual trajectory. The direction of the local eigenvector
corresponding ta. coincides with the direction of the major In our case £ =1/2007 [5]), taking S to be the action per

axis of such an ellipse. bounce in the double-well potential at the threshold orbit, the

:
7| (6)
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FIG. 2. Plot of the maxima of the Liouville and Moyal terms in
the course of time foe=0.7,4=1/2007 and other parameters as
in Fig. 1. A Gaussian wave packet centered =0.3
and p=0.1 whose Wigner function is W(q,p)

=(Umh)e” <x0%#-[(P-P?9*] (5=0.1) has been chosen as

an initial condition. Boundary conditions as discussed in the text.

Inset: vertically magnified plot of Moyal contributions. Notice that
the windows confining the Moyal term remains limited, even for
t>7,~(1/A)In(§%)~50 sec.

argument of the logarithm is of the order 200—300. So, forP

1/A=10 (see Fig. ], this givest,,;=50—60. By Berry’s
argument[18], integration over a time much longer than

tjog Should yield appreciable differences between the quan:

tum and the classical system.

On the other hand, calliniyl (L) the Moyal (Liouville)
terms of the evolution equatio@), for ;> 7,, that is, for
A<(Q), one should expect thatl (L) be confined within
an amplitude rang® oe3(MAD) (L M2y M, (Lo) being
the initial amplitude. This is due to the fact that expansion o
M (L) due to the contraction ahx or Ap lasts only for a
time 7,=1/Q). Thus the ratio

M| Mg

A Mol aianay
Ll Lol

(@)

can be limited by a suitable choice of the ratié({2). No-
tice that the ratigM|/|Lo| can be arbitrarily chosen by se-
lecting a suitable classical initial state. Equatigh shows
that for A<<(Q) the ratio of the Moyal to the Liouville terms

can be adjusted to a preassigned value. This limitation i

guaranteed for alk values which give rise to negligible
[Mol/|Lo| ratios.
Figure 2 is a plot of the maxima of the Moyal and the
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FIG. 3. DifferencesAW (see text between quantum and classi-
cal integrated Wigner functions extracted from the solution of Eq.
(4) with e=0.7, A=1/2007, and 0, respectively. Same boundary
and initial conditions as in Fig. 2.

tained in the range o€ values(extracted from Fig. 1 for
which the classical chaotic loss of directional coherence of
the maximum expansion is much faster than the decorrela-
tion time.
Yet the relative smallness of the Moyal terms does not
necessarily imply a small dynamical effect, thus, it is not a
sufficient condition for a QCC defined as the “absence of
appreciable differences between classical and quantum phase
ace densities.”
To compare the quantum and classical systems we have
calculated at each integration time the differences, point by
point, between the quantum Wigner functitv, obtained
by integration of the full Eq(4) and the classical Wigner
function W, obtained from Eq(4) without the Moyal term,
§W(X!p!t):WQ(X!p1t)_WC(X!pit)'

We integrate W over the grid, obtaining
Jail the gricdW(X,p,t)dx dp and normalize to the grid inte-

fgral of the Wigner distribution. CallingW such a ratio, we

plot in Fig. 3 its temporal evolution. If we cdlll the average
of M over the grid, them\W is proportional tof Mdt.

Due to the fact thatQ2)/A>1, the maxima of the Moyal
term (M) remain limited over a time longer than any
relevant time of the system. ThusW has an upper limit
smaller thanM ,,-t. Indeed, the temporal evolution of
AW is approximately fitted by a linear growtfrig. 3).

For more complex systems, even thoudh) is still a
relevant indicator, the direction af generally does not lie on
the (x,p) plane. Our argument, having to combine dynami-
cal aspects with the quantum conjugacy of the two variables
X andp, is limited to a single degree of freedom, p) with
a forcing term. However, it is already descriptive of a large
test class for quantum chapg] [10].

Liouville terms in the course of time. As shown by the mag-  The authors acknowledge R. Giachetti for useful discus-
nified inset, the Moyal contributions are always muchsions, F. Rubini for advice on the numerical simulation
smaller than the Liouville terms despite the absence of thechemes, and G. Puccioni for technical assistance. This work
diffusive and dissipative terms in E¢4), at variance with  was partly supported by the EEC Contract No. CHRX-CT93-
the expectation of Ref9]. Notice that this limitation is ob- 0107 VII.
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