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We introduce a characteristic time of a classical chaotic dynamics, represented by the coherence time of the
local maximum expansion direction. For a quantum system whose classical limit follows the above chaotic
dynamics, the ratio between this time and the decorrelation time~of the order of the reciprocal of the maximum
Liapunov exponent! rules the ratio between nonclassical~Moyal! and classical~Liouville! terms in the evolu-
tion of the density matrix. We show that such a ratio does not provide a complete criterion for quantum-
classical correspondence.

PACS number~s!: 05.45.1b, 03.65.Bz

The problem of the correspondence between the classical
and the quantum evolution of a Hamiltonian system has been
recently considered@1–7# in various situations. A quantum-
classical correspondence~QCC! implies an answer to the
question of the limitations imposed by the quantum nature of
the system to the measuring process@8#.

In particular, recent papers@9# have shown that the ratio
between nonclassical and classical terms in the evolution
equation of the phase space density diverges for an unstable
motion, whereas it decays to zero if one accounts for a cou-
pling with the environment, and that decay was taken as a
definition of QCC.

In this paper we present a relevant case whereby~i! that
ratio remains confined to very small values even for an iso-
lated system~i.e., in the absence of the environment!, be-
cause of the intrinsic spread of the chaotic motion, and yet
~ii ! a QCC, defined more rigorously as the absence of appre-
ciable differences between classical and quantum phase
space densities, is not achieved, since for long times the
quantum phase space density shows appreciable deviations
from the classical one. Claim~i! is based on the introduction
of a chaotic indicator, not considered previously in classical
chaos; claim~ii ! is supported by numerical evidence. Pre-
cisely, we refer to a classically chaotic nonautonomous sys-
tem ~i.e., with a time dependent forcing term!, which models
a Hydrogen atom in a Rydberg state excited by a microwave
field @10#.

The quantum evolution is described by the quasiprobabil-
ity Wigner function@11#
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wherer̂ is the density operator of the system,p andq are the
conjugate variables and̂ . . . & stays for the expectation
value.

The Wigner function can take negative values, thus it is
not a probability function@11#; however, it represents a good
tool for inspecting the classical or quantum nature of the
system. Indeed, its time evolution is ruled by
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whereH is the Hamiltonian of the system written in the
Wigner form @12#, V is the potential,$ %PB stays for the
Poisson brackets@13#, and ]x ,]p stay for ]/(]x),]/(]p).
Notice that the right hand side of Eq.~2! contains two dif-
ferent terms which contribute to the evolution ofW. The
Poisson bracket term generates the ordinary Liouville flow,
which corresponds to the classicalW evolution, while the
sum represents the contribution of the Moyal terms@14# to
the quantum evolution ofW.

In Ref. @9# the Moyal terms become comparable to the
Poisson bracket at a timet1 proportional to the reciprocal of
the Liapunov exponentL. There, the growth of the Moyal
contributions is quenched by the coupling with a thermal
bath, which involves further diffusive and dissipative terms
to be added to Eq.~2!. Even though dissipation and diffusion
guarantee the vanishing of the Moyal terms on the long time
scales and thus the correspondence between the quantum and
classical description, here we are interested in finding suffi-
cient conditions for confining the Moyal contributions within
a limited range for isolated systems.

Let us introduce one of the simplest chaotic dynamics
which gives rise to nonzero Moyal contributions. The Hamil-
tonian of the system is
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where m is the mass of the system,
V(x,t)5V1(x)1V2(x,t), V152(1/2)ax21(1/4)bx4, and
V25ex cosvt.

Here V1 is the unperturbed potential,V2 is the driving
potential, anda,b,e,v are the real parameters to be later
specified. Equation~2! becomes
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while the classical behavior is ruled by the Hamilton-Jacobi
equations which read as
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ẋ5
]H

]p
5

p

m
,
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Equation~5! can give rise to a chaotic dynamics. Further-
more, choosingv@(a/m)1/2 ~forcing frequency much
higher than the proper frequency of the autonomous part!
preserves the conservative nature~in average! of the system.

The guiding line of our approach is that, for a bounded
chaotic system, another characteristic time scale arises in ad-
dition to t1 , due to the continuous stretching and folding
process which causes a twisting of the direction of the eigen-
vector corresponding to the local maximum Liapunov expo-
nentl. As a consequence, the system does not always ex-
pand in the same direction of phase space, but, on the
contrary, each variable experiences both contraction and ex-
pansion depending upon the local position on the trajectory.

Thus besides the decorrelation timet1 , one must intro-
duce another time scalet2 , proportional to the reciprocal of
the averaged frequency^V& of the twisting of the direction
locally singled by the eigenvector corresponding tol.

Depending on the values oft1 and t2 , we classify the
chaotic dynamics as follows. In those systems for whicht1
is smaller than, or of the order oft2 , the direction ofl
remains invariant over the time scale sufficient for the Moyal
contributions to be comparable with the Liouville terms.
Hence these systems are intrinsically quantum. A transition
from the quantum to the classical description can be
achieved only through the coupling to an environment@9#.

On the contrary, ift1@t2 , the growth of the Moyal terms
on a single decorrelation time is limited by the change of the
direction of the maximum expansion. Indeed, the growth of
the Moyal terms is due to the fact that, since they are pro-
portional to the powers of the reciprocal ofDx(Dp), if one
of the two conjugate variables is locally expanding, the other
one is contracting to preserve the volume conservation in the
phase space. As a consequence, those terms containing pow-
ers of the contracting variable in the denominator tend to
explode. To apply these general considerations to the specific
chaotic dynamics, we first identify the range of the control
parameters for which the system belongs to the former or to
the latter case.

For the classical evolution of the driven double-well sys-
tem @Eq. ~5!#, Fig. 1 shows the plot ofL and^V& against the
control parametere. L has been calculated with the algo-
rithm by Benettinet al. @15#. As for ^V&, we have intro-
duced the following strategy. At each timetn we consider a
circle of radiush centered at the intersection of the actual
trajectory with a plane transversal to the flow. In our case,
for any time, this plane coincides with the two dimensional
(x,p) projection of the phase space. We let all the points on
the circle evolve to the timetn11(tn112tn5tRK , where
tRK is the Runge-Kutta integration interval!. At this new
time the points will form an ellipse about the time evolved of
the actual trajectory. The direction of the local eigenvector
corresponding tol coincides with the direction of the major
axis of such an ellipse.

For a givene we have reported in the inset of Fig. 1 the
temporal evolution of the angleu formed by the major axis
of the local ellipse with thex axis. The twisting process
determines a characteristic oscillation ofu, the averaged fre-
quency of which iŝ V&. Looking at Fig. 1 we can easily
locate the ranges of the control parametere for which
t1@t2 holds.

Moving now to the quantum system ruled by the same
Hamiltonian, we will focus on thet1@t2 case to show that
the Moyal terms are limited and therefore we cannot invoke
their growth to explain the lack of the QCC.

For this purpose, Eq.~4! has been numerically integrated
over aN3N two dimensional (x,p) grid, where the maxi-
mum and minimumx and p values have been selected ac-
cordingly to the choice ofa and b. At each timetn , the
Liouville terms have been evaluated with the Lax-Wendroff
scheme@16# due to the hyperbolic nature of such terms,
while the Moyal contributions have been evaluated using a
finite difference method for the third order partial derivatives
@17#. Boundary conditions implying the setting to zero of the
derivatives at the borders of the grid have been chosen. The
numerical integration has been performed over a global time
much larger than 1/v in order to assure the conservative
nature of the quantum solution. A useful parameter is also
the log timet log @18#

t log5
1
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In our case (\51/200p @5#!, takingS to be the action per
bounce in the double-well potential at the threshold orbit, the

FIG. 1. Maximum Liapunov exponentL ~solid line! and aver-
aged twisting frequencŷV& ~dashed line! as functions of the forc-
ing amplitudee for the driven double-well system.L and^V& have
been evaluated for the classical system@Eq. ~5!# with a51, b
52,m51,v52.5. Arrows indicate a possible choice for which
^V&@L. Inset: Temporal evolution of the angleu formed by the
eigenvector corresponding to the local maximum expansion direc-
tion with respect to thex axis.u has been calculated fore50.7 and
the above values of the other parameters.
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argument of the logarithm is of the order 200–300. So, for
1/L510 ~see Fig. 1!, this gives t log550260. By Berry’s
argument@18#, integration over a time much longer than
t log should yield appreciable differences between the quan-
tum and the classical system.

On the other hand, callingM (L) the Moyal ~Liouville!
terms of the evolution equation~4!, for t1@t2 , that is, for
L!^V&, one should expect thatM (L) be confined within
an amplitude rangeM0e

3(ulu/^V&) (L0e
ulu/^V&), M0 (L0) being

the initial amplitude. This is due to the fact that expansion of
M (L) due to the contraction ofDx or Dp lasts only for a
time t251/̂ V&. Thus the ratio

uM u
uLu

;
uM0u
uL0u

e2~L/^V&! ~7!

can be limited by a suitable choice of the ratioL/^V&. No-
tice that the ratiouM0u/uL0u can be arbitrarily chosen by se-
lecting a suitable classical initial state. Equation~7! shows
that forL!^V& the ratio of the Moyal to the Liouville terms
can be adjusted to a preassigned value. This limitation is
guaranteed for all\ values which give rise to negligible
uM0u/uL0u ratios.

Figure 2 is a plot of the maxima of the Moyal and the
Liouville terms in the course of time. As shown by the mag-
nified inset, the Moyal contributions are always much
smaller than the Liouville terms despite the absence of the
diffusive and dissipative terms in Eq.~4!, at variance with
the expectation of Ref.@9#. Notice that this limitation is ob-

tained in the range ofe values~extracted from Fig. 1! for
which the classical chaotic loss of directional coherence of
the maximum expansion is much faster than the decorrela-
tion time.

Yet the relative smallness of the Moyal terms does not
necessarily imply a small dynamical effect, thus, it is not a
sufficient condition for a QCC defined as the ‘‘absence of
appreciable differences between classical and quantum phase
space densities.’’

To compare the quantum and classical systems we have
calculated at each integration time the differences, point by
point, between the quantum Wigner functionWQ obtained
by integration of the full Eq.~4! and the classical Wigner
functionWC obtained from Eq.~4! without the Moyal term,
dW(x,p,t)5WQ(x,p,t)2WC(x,p,t).

We integrate dW over the grid, obtaining
*all the griddW(x,p,t)dx dp and normalize to the grid inte-
gral of the Wigner distribution. CallingDW such a ratio, we
plot in Fig. 3 its temporal evolution. If we callM̄ the average
of M over the grid, thenDW is proportional to*M̄dt.

Due to the fact that̂V&/L.1, the maxima of the Moyal
term (Mmax) remain limited over a time longer than any
relevant time of the system. ThusDW has an upper limit
smaller thanMmax•t. Indeed, the temporal evolution of
DW is approximately fitted by a linear growth~Fig. 3!.

For more complex systems, even though^V& is still a
relevant indicator, the direction ofl generally does not lie on
the (x,p) plane. Our argument, having to combine dynami-
cal aspects with the quantum conjugacy of the two variables
x andp, is limited to a single degree of freedom (x,p) with
a forcing term. However, it is already descriptive of a large
test class for quantum chaos@6# @10#.
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was partly supported by the EEC Contract No. CHRX-CT93-
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FIG. 2. Plot of the maxima of the Liouville and Moyal terms in
the course of time fore50.7,\51/200p and other parameters as
in Fig. 1. A Gaussian wave packet centered inx50.3
and p50.1 whose Wigner function is W(q,p)

5(1/p\)e2(x2x0)
2/d22@(p2p0)

2d2/\2# (d50.1) has been chosen as
an initial condition. Boundary conditions as discussed in the text.
Inset: vertically magnified plot of Moyal contributions. Notice that
the windows confining the Moyal term remains limited, even for
t.t1'(1/L)ln(S/\);50 sec.

FIG. 3. DifferencesDW ~see text! between quantum and classi-
cal integrated Wigner functions extracted from the solution of Eq.
~4! with e50.7, \51/200p, and 0, respectively. Same boundary
and initial conditions as in Fig. 2.
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